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What is Magnetic RAM?

% Magnetic RAM (MRAM) is
e Random access: speed comparable to DRAM
* Non-volatile

* MRAM is byte-accessible
e No need to read or write full blocks

“ MRAM doesn't suffer wear

* No need for wear-leveling
* No limit on humber of writes

* MRAM is how in production
* Freescale has been making chips for over two months
* MRAM is (currently) expensive

o Eventually cost comparable to DRAM
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Why file systems for MRAM?

* File systems traditionally use disk as non-volatile
storage
e Large blocks / transfer sizes
e Expensive seeks
 Metadata size relatively unimportant

* MRAM provides

 Long-term storage
e Byte-addressability with low seek time
e High-speed access to complex metadata

<+ Problems:

e Cost is amajor issue (> DRAM)
* File systems aren't designed to take advantage of MRAM

* What should a file system for MRAM look like?
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What should we keep in MRAM?

* Memory (nhon-volatile or otherwise) is expensive
o Keep small items in it?
o Keep recently used items in it?

* Large (data) transfers don't benefit as much from
memory residence

* Most transfers are large and sequential
e Latency can be hidden with prefetching and writebehind

* Metadata is perfect for MRAM!

Small transfers (often a word or two)
Still very large: about 1% of total file system size

Reduce memory demands with new metadata structures and
compression

Allows the construction of richer metadata structures that
might require non-sequential accesses

L - ISSDM

e J—




Outline
* Introduction fo MRAM for file systems

% LiFS: Linking File System
* More effective searching and organization
e Made possible by MRAM's speed

* Compressing metadata in MRAM
* Making the most of a scarce resource

* MRAM reliability techniques
* Making MRAM safe for file systems
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The problem with metadata

* The number of files is dramatically increasing

e Disk capacity is far larger
* Applications like to use lots of files

* How can we organize them?

e Directories?
- Good model for few files, but not for billions!

- Difficult for g?eneral directed graphs: files are
typically in only one directory

e Applications?
- Many apps manage their own files
- Works (somewhat) but makes sharing difficult

G yﬂ:‘:. e - oy,
Tejd Al
=N, . IsSsbM
/J/f :,,'. "_ .
42 122"



The solution: attributes & links

* Extend application approach into the file system
* Provide primitives to manage the relationships
o Allow multiple apps to use the same files and links

* Sharing is easy
e File system maintains the relationships

* Searching is now possible...

Application A Application B

File system

( Attributes Relationships)
Search




MRAM makes this possible

name: foo
user: elm,carlosm

<+ Directed links between
files to show relationships

< Links have attributes

¢ EXPI"@SS The Type of name: bar
relationship between the  user:carlosm name: bar
files user: elm

e Describe the link itself

*t' !‘.oTs of links means lots of
see kS" name: X

e MRAM makes this fast user: elm |
% Links are small elm: path = “foo/x” Q

| : path= “foo/bar”
e MRAM has low latency FarosT PR RO | h = “foo/bar”
elm: path = "too/bar

% Searching can be slow carlosm: no path!

i s;ﬁlﬁeep the indices in MRAM
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New system calls

System Call Function

rellink Create relational link

rmlink Remove relational link

setlinkattr Set attributes on link

Return handle to all the links

openlinkset o a fila

Get name and attributes of next

readlinkset .
link in the set
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Implementation

* FUSE: maps VFS calls user space
back into user space

* MRAM: system memory
locked into DRAM

* Not yet using MRAM...

< Custom MRAM allocator
with fixed-size pools

e Efficient to allocate and
free small objects

“ Optimizations
e String table i ’

e Full path name cache Linux VFS FUSE kernel module
kernel space

client app user space daemon
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Evaluation

<+ Metrics

e Traditional FS operations: compare to other file
systems

 New FS operations: scalability
e FUSE overhead

* Experimental setup

e Sun workstation running Linux 2.6.9-acll
e AMD Opteron 150 @ 2.4 GHz
e 1 GB DRAM




Performance: Files

* Create a directory free
with empty files
e 15620 files

* Read all of the files

* File systems are "fresh”

* LiIFS is competitive

LiFS w/FUSE
ext2 w/FUSE
B XFS w/FUSE
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Performance: File Attributes

W Get 2 Attrs

B Set2Attrs ext2 (FUSE) SetAttr
LiFS (FUSE) SetAttr

ext?2 (FUSE) GetAttr
LiFS (FUSE) GetAttr
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Create / Remove Directories

Create Dirs - Remove Dirs
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ext2 (FUSE) ext2 (FUSE/RD) LiFS (FUSE) LiFS (FUSE/RD)

| 11,110 directories
LiFS outperforms ext2 with FUSE and RAM disk
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Create / Delete LIFS Links

B 2Acwrs/Link B 30Awrs/Link * Test on 15,620 files

3.00 “ Processed 15,620 random
links

* More attributes make
link identification slower
e Need to traverse

structures to identify
desired link
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Compressing Metadata in
MRAM

* LiFS promises lots of additional functionality,
but...

* MRAM is expensivel

e Currently, much more than DRAM
e Eventually, costs drop to about DRAM costs

* Important to save space in MRAM if possible:
compress metadata

e Reduces MRAM requirements

e May improve speed by reducing the amount of data
moved

e Byte-accessible MRAM makes this feasible




Metadata in Unix

< MZTGdGTG is stored in Protection mode | Link count
inodes

* Timestamps
e Ownership Block count
* File size User

Size

e Link count Group

D irectories poim' to Generation
inodes Flags

* Inodes themselves don't Flegtie (e
contain names

* Total size is about 54 eSS (HHHe
bytes

e Times, size are 64 bit
fields

Modify time




Compressing metadata

% Most metadata is compressible
e Integers have small values (link count, size)
e Times can be expressed as offsets
e Permissions can be table-based
Compression is effective
e 15-20 bytes per inode on typical file systems (factor of 2.5-3.5)
e Tnodes are variable-sized: compression rate varies

Can this be used in a real file system?
How does it affect performance?
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Inodes and file data

* Fields in the inode are gamma compressed

* Small numbers compress very well
e Timestamps are encoded as deltas from earliest time

<+ Permissions are table-based

e Table contains all unique combinations of «<user ID, group ID,

permissions>
- Most common combinations stored early in the table

e Location in table of this inode's permissions is gamma-
compressed

e Table could easily be extended to handle ACLs...

* File data stored in compressed blocks

e Linked list of block pointers
e Random seeks not slow: pointer chasing is in RAM

e Hybrid on-disk / MRAM-based system will need some minor
changes
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Separation of MRAM and DRAM

* Most memory-based file systems simply use the
caching structures as "permanent” storage

e Very fast: almost no copying

e Inefficient: caches designed for very fast lookup at
the cost of higher memory usage

e Unsuitable for MRAM / DRAM systems
- Must build the whole system from MRAM
- No way to "start clean”

* MRAMFS explicitly copies from non-volatile
memory to DRAM

* Metadata and data copied back and forth
* Can be slower for large operations

* May be more reliable: fewer code points where
L % jssphermanent store is accessed and modified




Postmark benchmark results
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Postmark results

* All of the file systems run in-memory
* Ext2 slowest by far: sequential directory handling
e JFS very fast
* MRAMFS comparable to ReiserFS
e MRAMFS slightly slower than XFS, JFFS2

* All but JFFS2 are uncompressed

 Memory usage higher by a factor of about 3
e JFFS2 compresses blocks: not as efficient for inodes

* Compressed inodes faster in MRAMFS!

e Less metadata copied: faster performance

e Compression can provide speed increase by avoiding
accesses to (relatively) slow DRAM
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Compression reduces MRAM
demand

* File systems will run much faster with non-volatile
memory
* Don't need to read metadata from disk
* Don't write metadata back to disk
* Fast access to parts of an inode

* Compression of metadata can reduce memory usage and
thus cost

e Factor of 2-3 or more

* May save time, too: less data movement between (relatively)
slow main memory and cache

“ Alternate file structures can make efficient use of
MRAM and other non-volatile memories

e Relatively small allocation chunks

e Simple, reliable file system design
ish .No need for complex structures that may introduce bugs
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Making MRAM file systems safe

* MRAM advantages

e Fast metadata access

e Richer metadata structures

e Reduces sync and transfer overhead
* File system log for fast recovery

* Fast, on-line consistency checking

* MRAM disadvantages

e Wild writes from buggy software

- Potentially much less "control” than with disk-based
file systems: no centralized I/0 access routines

e Bit flips on MRAM
* How can this corruption can be prevented?
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Solution: Two-Level Approach

* Attack the problem on multiple levels

e Guard against memory corruption due to OS mistakes

e Check file system operations to make sure that
they're correct

* Memory consistency

* Page-level write protection

e Error Correcting Codes (carefully chosen)
* File system consistency

e Log/periodically check structure changes
e On-line checks (log replay)
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Design: Protected NVRAM

* MRAM is partitioned into regions (unprotected/protected)

* Protected region
e Collection of (data, parity)-blocks
 Worite protection at page-level (4KB)
e Each (data, parity)-block is a codeword

* EVENODD as ECC

* Requires systematic encoding

Protected page MRAM
Data

Each cell represents
an encoded block




Design: Mapping Data to
EVENODD

% Visualize the data block as a 1D array mapped to
2D array

* Can tolerate any one column error (bursts)

Data block EVENODD matrix
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Write Algorithm: identify
location

Step |:ldentify address and write size

write <addr, data, size>
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Write Algorithm: copy to scratch

Step 2: Copy corresponding data/parity
sections out to “scratch”

Scratch

r\/_ Copy to scratch &

Data Page Parity Page




Write Algorithm: update In
scratch area

Step 3:Write change in scratch region, compute parity

Write modified data ( Scratch

[

- Compute and

write parit

Data Page Parity Page




Write Algorithm: write back
changes

Step 4: Unlock pages and write changes (vulnerable)

Scratch
[ ] [ ]

d'l

Data Page



Write Algorithm: check writes

Step 5: Lock pages and check for errors

v v
[] []

0

Data Page Parity Page




Design — Transaction Log

Transaction Log State Table

Created for
each fs call Index State

<|D,> S(ID)
<ID> | S(ID»)

<ID«> | S(IDy)

consist of multiple

operations on

multiple inodes . inode state
inode number

Each transaction may ! \




Consistency Checking

Transaction table (constructed from log)

-

Clustered log entries

\_

Pending inode List Files that have NOT been checked
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Consistency Checking
Algorithm

% Initialize new log and state table

* Insert entries into transaction table and pending
list

* For each inode on the pending list

o If entry exists in "live” state table
- Get next inode

e If entry does not exist in the "live” state table
- Fetch inode state from the "old" state table
- Replay all ops in the transaction table
- Compare replayed inode to “live" inode

e Inconsistency if replay does not match "live” inode
* Requires O(1) lookup and replaying operations
wom <~ Block checks on NVRAM
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Prototype Implementation

* Implemented in LiFS

* Implemented protected regions in MRAM
allocator

e Required additional calls in the interface
°* mprotect

« EVENODD
* Logged metadata operations in LiFS calls
o All except extents and xattrs
* Implemented On-Line Consistency Checker

e Currently outside of LiFS, but can read LiFS log
e Currently builds structures outside of protected area
e Persistent structures can be stored in protected
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Prototype Performance

“ Setup
e 200 MB protected "MRAM" region
e LiFS running through FUSE
e EVENODD(96,64) and EVENODD(288,256)

< Fault Tolerance

e TInject faults into protected region
e Aggressively spawn threads that illegally write to region
e Tnject faults while performing valid writes to the region

* Raw write performance
* (Gives overhead for each prototype component
* File system write performance
* Use a metadata write-centric workload
+ Consistency Check Latency
2 isspyse same write-centric workload
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Performance: Fault Tolerance

* Targeted entire 200 MB region

e Performed 250,000 16-byte writes
e Injected invalid writes while running workload

* Roughly 10,000 invalid writes were injected
e 180-237 injected writes escaped page protection

e 89-94% of these are caught by the EVENODD
° Why not 100%?

- Injected writes over-written by valid writes




Performance: Raw Writes

* Most of the time is spent ® mprotect @ decode
¢ mpr'oTec’r encode @® structure

e Mprotect: system call to
protect memory

* Takes roughlé3 seconds

to perform 250,000

writes

o “Bl_ock" writes: small
writes coalesced

“ Without mprotect the
same workload takes 1
second




File System Performance with
Consistency Checking

<+ Create 100 directories 300

* Write 100-500 files to
each directory

“* Create links for each file
* Perm changes to file

No
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N
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metadata

* Tests run with
e Full protection
* No mprotect 0
e Only logging
e Vanilla LiFS

o
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Latency (seconds)

U1
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100 200 300 400 500
Files per directory (100 directories)
O ALL_PROT 256 O ALL_PROT 64

NO_PROT_256 O NO_PROT_64
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Performance: On-Line Check

* Generated a log in LiFS

e Same as latency workload (100 dirs/100-500 files)
e Created 120,500-2.1 million operations

* Ran consistency checker outside of LiFS
e Latency from less than 1 to 5.5 seconds




Related Work

* Queryable file systems
e Expressive queries
e Links don't have attributes (only files)

e Advanced commercial file systems
- Spotlight (Apple)

- ZFS (Sun)
- WIinFS (eventually...)
e Somewhat slow: information on disk

* In-memory file systems
e Lack advanced file system features (links, searching)
* No compression

e Often treat memory as a block device (flash RAM)
* Database research on utilizing persistent memory

’;:sThe Semantic Web




Future Work

% Push LiFS with these mechanisms into the kernel
* Distributed metadata using LiFS-based models
* RAID algorithms on multiple banks of MRAM

* Explore different approaches to data structures
and compression

* Coding
* Incorporate logging code for extents and x-attrs
e Integrate the consistency checker into LiFS

e Experiment with other ECCs

e Allow communication between the MRAM-level
mechanisms and the consistency checker
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Conclusions

* MRAM promises big improvements for file
systems
e Richer metadata

Higher performance

_ower space requirements

Higher reliability

* Linking file system provides functionality
currently unavailable

* Compression ensures that the metadata fits in
MRAM

* Error correction and online consistency checking
keep the metadata safe
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Questions?

* Thanks to our sponsors:

 National Science Foundation
e SSRC industrial sponsors
e LANL

% Thanks to MRAM team members

e Carlos Maltzahn, Scott Brandt

e Sasha Ames, Nikhil Bobb, Karl Brandt, Nate Edel,
Kevin Greenan, Adam Hiatt, Owen Hofmann, Alisa
Neeman, Mark Storer, Deepa Tuteja

* http://www.ssrc.ucsc.edu/proj/scm.html
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